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Abstract- The Finite Integration Technique (FIT) ac- tion of the equations themselves, the so called Maxwell's
cording to T. Weiland [1] is an efficient and universal Grid Equations are derived. Based on the concept of grid
method for solving a large scale of problems in compu-
tational electrodynamics. Up to now the conventional voltages and grid fluxes they represent an exact transfor-
formulation itself has had an accuracy order of two with mation of the continuous relations to grid space, as the
respect to the spatial discretization. In this paper an integrals used are only specialized to a finite set of in-
innovative extension to fourth or even higher order is tegration paths (along edges of the grids) or integration
presented. The convergence of the presented scheme is
demonstrated by a general dispersion equation and sta- volumes (cells of the grids), respectively.
bility issues are discussed. An approach for a stable spa- Thus, the approximations of the method do not come
tial interface connecting regions of higher order with the into effect until the material matrices are introduced (the
standard FIT scheme is proposed. second modeling step). For the derivation of these dis-

Keywords-Finite Integration Technique, FDTD, higher crete analogs of the continuous constitutive relations, the
order modeling, numerical dispersion integral state variables (fluxes and voltages) have to be

retransformed to actual field components, as will be ex-
I. INTRODUCTION plained in more detail later. For the conventional FIT

During the last years a lot of approaches towards [1], the transformation of flux into voltage quantities has

higher order spatial finite difference (FD) schemes have typically a second order accuracy.
been developed. Improved spatial discretization is nor- From this point of view, the path to an extension to
mally achieved by modification of the discrete curl oper- higher order schemes has naturally to be the following.
ator resulting in wideranging spatial schemes for static Rather than introducing higher order schemes for the
[2], transient [3], [4] and frequency-domain [5] problems. differential operators curl and div (as in the FD liter-
Approaches using interpolating functions for fields with ature [2]-[12]), or defining higher order basis functions
cubic splines were also developed [6]. for single cells (as in p-adaptive finite element schemes),

In transient field analysis especially in the finite dif- utilizing an increased number of degrees of freedom per

ference time domain scheme (FDTD) combined meth- cell, "only" the material matrices have to be replaced

ods for explicit higher order spatial resolution and time by suitable higher order operators. As an important
integration are presented in [7]-[10]. These approaches consequence, as long as some basic requirements for the

use substitutions of higher order time derivatives by new material matrices are met, all the well-known con-

spatial derivatives leading to higher order Leap-Frog sistency and conservation properties of FIT [14] can be

schemes or Runge-Kutta integration methods. Recent preserved.

approaches mix higher order spatial and temporal dif- II. BASIC CONCEPTS
ferencing schemes to obtain a full fourth order accurate
scheme for transient field simulation [12]. A completely A. FI-Technique
different approach utilizes multi-resolution functions and The formulation of the Finite Integration Technique
wavelets for representation of fields leading to higher or- proposed by T. Weiland [1], [15] provides a general spa-
der formulations in space [13]. This approach is currently tial discretization scheme usable for different electromag-
discussed and modified by various authors. netic applications of arbitrary geometry, e.g. static and

In this paper an efficient spatial formulation of arbi- quasi-static problems or calculations in frequency- and
trary order for the Finite Integration Technique is pre- time-domain.
sented and its applicability in the case of a fourth order The geometry is discretized on a dual-orthogonal grid
scheme (FIT-4) is demonstrated. set consisting of the primary grid G (with the edges Al,

As one of the key points in the theory of FIT, the the facets AA and the material distribution) and the
modeling procedure of Maxwell's Equations can be sep- so called dual grid G (containing the dual edges Al and
arated into two steps. In the first step, the discretiza- dual facets AA). In contrast to the vectors of elementary

1054-4887 © 2002 ACES
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field values e, d, h, b, the FIT deals with the integral tency of the conventional FIT formulation
expressions

SC 0, (3a)
=/ • d 9''d , (1a ) SC = 0 , (3 b )

C =C:T (3c)

f § "', (1b) which reflect the properties of its analytical pendant.

f For connecting the voltage and flux quantities, the

SDdA, (Ac) constitutive relations

Sff A dA (1d) i = M -, (4a)
aJAAh = Mp-•, (4b)

which form the components of the vectors g, d, hand b, 6 = - (4c)

being indicated by bows. The components of the vectors
of electric voltage i and magnetic flux 9 are located on with the discrete material matrices M/-i, M 1-1 and

the primary grid G, and the components of the vectors M i-i are introduced. They are responsible for the dis-
of electric flux d, electric current j and magnetic voltage cretization errors of the method and thus are the key

Son the dual grid C (see Fig. 1). point of the derivations in the following sections.

III. HIGHER ORDER MATERIAL RELATION

a) b)G As explained before the MGEs deal only with the

b.. topological relation of the involved electric and magnetic

quantities. Therefore the pure application of (2) is exact
Si.e. no discretization process is applied. The constitu-~I .................. i. e . n

. . tive relations (4) connect fluxes through facets of one
grid with voltages along edges of the corresponding dual

)JO grid which intersect these facets normally. The calcu-
- Ilation of the coupling coefficients includes the metric of

"the grid as well as the material distribution.

Fig. 1. Location of electric voltage 'e on edges and magnetic flux The scheme connecting fluxes with voltages has to take

on facets of primary grid G (a) and magnetic voltage hi on into account the Maxwellian continuity law of the tan-

edges and electric flux d and electric current 7 on facets of gential field strength and normal flux density at material
dual grid G (b). boundaries

Et.(:'-, t) = Et.n(i;+, t), (5a)
The FIT formulation results in the so called Maxwell JA (F) = Htan (r'-, t) - Htan (F+, t), (5b)

Grid Equations (MGEs) Bnorm(f'-, t) = Bnorm(nF+, t), (5c)

A= 
d(2a) 

qA() Dno= m(-, t) - Dnorm(f'+, t) (5d)

dt with the surface current JA and the surface charge qA.
Cdh = + a + J ext, (2b) These laws ensure in the case of surface charge and sur-

dt face current free regions the continuity of the tangential

S= q, (2c) field strength and normal flux density of the electric and

SG = 0, (2d) magnetic field.

A. Conventional FIT Material Relation

whereby the curl matrices (C, C) and the source matri- In the following, a dual-orthogonal grid set with the

ces (S, 8) represent a summation scheme for the closed general coordinates u, v and w is regarded. For simplic-
line integral around each cell facet and closed surface ity reasons, the flux to voltage transformation is consid-
integral over each cell volume, thus providing the topo- ered only for the magnetic field, the conversion mech-

logical relation needed by Maxwell's integral equations anism for the electric field is straightforward. Conven-
applied to the grid set. The numerical character of the tional FIT calculates the coupling coefficients of mag-

spatial operators [14] are vital for the underlying consis- netic flux to magnetic voltage in a two step process.
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1. The flux density is derived from the flux through the
related facet AA of the primary grid. The definition of ,-.

the magnetic flux through a cell facet [ AA,_, [A/

b fA (6) (G . j.k .... h
a~,~ Al

ends in conventional FIT in the approximation A/ý (i-I) Al, ()

b = b. AA + O()A1 4), (7) u

whereby the local flux density b is located at the center Fig. 2. Relation of magnetic flux b with magnetic voltage ih in
of the related facet. conventional FIT.

2. The locally calculated flux density is converted to
voltage by integrating it along the corresponding cell
edge, resulting in the multiplication of the flux density
value with a quotient of edge length and proper averaged Alak
material value respecting (5c)

f d§'+ fid§k)eAlj.,)

= -lb 2 + pftb + O(Al" 3 ). (8) G

The length of the dual cell edge is given by Ai = Ala)
All/2 + A12 /2, All and A12 associated to the adjacent w Eaj-1k-1

cells of the primary grid. A full third order scheme is
guaranteed, if the grid is equally spaced and the mate- --.
rials homogeneous, otherwise the local conversion order
decreases down to O(Al 2 ). u Alu (i

This two step process ends in the following formula, Fig. 3. Relation of electric flux 2 with electric voltage " in
describing the generalized material coefficients for the conventional FIT.

transformation of magnetic flux into magnetic voltage

l .dg= A'- f d O--I2. d...3) Approximation of integrals associated to surfaces (flux)

S pav.AAn A or edges (voltage) with a suitable localized higher or-
der polynomial function describing field strength or flux

h, b density (in conventional FIT they are assumed to be

P M n,J b n (9) constant along the edges).
* Conversion of the derived field strength- or flux density

with values locally in their equivalent flux density- or field

strength values respectively.

1 ± A 2  * Interpolation of these field values by another localized

Pa. Aln (10) higher order polynomial function enables the calculation
of the desired voltages respectively fluxes.

The necessary metric information, material distribution Note that in contrast to other higher order approaches
and location of the flux and voltage values for the mag- using wideranging spatial differential operators, this new
netic field is displayed in Fig.2, for the electric field in approach leaves C and S untouched, thus the properties
Fig. 3. The resulting material coefficients represent cell of FIT (3) [14] still hold for this discretization technique.
inductances, cell capacities and cell resistances, respec- In the following section, a general method for deriving

tively. higher order conversion schemes for surface based (flux)
in edge based (voltage) quantities is discussed and an

B. Principles of Higher Order Spatial Discretization exemplarily approach for fourth order modeling (FIT-4

The new higher order material modeling is a three step scheme) is presented. Once again for simplicity reasons
process utilizing piece-wise defined polynomials and fol- the discussion is restricted to the conversion scheme for
lowing the basic ideas of the conventional FIT. the magnetic field, the construction of the scheme for the
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electric quantities or the conductivity current is straight- r _

forward. As seen before for the conventional scheme, AA" 6,, I

a local decrease of the convergence rate is inflicted by ------ " -----
non-equidistant grid spacing or inhomogenious material Ip,,, ?
distribution. 4,_,
C. Higher Order Flux to Voltage Conversion hIP,, Al

C.1 Derivation of Flux U A4 A4.... 1,

The new approach assumes a piece-wise defined higher G
order magnetic field strength function h(u, v) describing Al° ,,, l-k,-r . Al (.,)-

the norm al field com ponent on a surface consisting of v( ------
facets A(,,). The surface integral of the assumed func- U

tion multiplied by a material weighting function u(u,v)
approximates the magnetic flux through the surface con- Al.
sidering (5b) and assuming surface current free regions.

For example a localized biquadratic formulation of the Fig. 4. Relation of the magnetic field strength value h(ij) in w-
normal field strength function on the facets AAW( 1c, I direction located at the intersection point of dual edge Al(k)

AA,(+I,j), AA,,( 1 _•,j)I, AAw(ij+,) and AAw,,j_1) can and primary facet AA(i~j) with the magnetic flux values
be written as related to the facets of the primary grid.

h,(uv) = u + a3  v+ a4  U+ a5 - scheme to all facets lead to the five-banded diagonal ma-

with the five unknowns a,, a 2, *" ,, a5 . Starting with the trix
five flux values b,,, b ( , + , b (i_,j), bw( ±,j+), bw(.._l
and assuming an arbitrary material distribution py(u, v) h = M(A,,)-9 (15)
on the facets we postulate: containing information about metric and material distri-

S1 h.(u,v), p.(u,v) du dv, (12) bution.
, hu d( Fig.4 displays the magnetic fluxes %, metric coeffi-

cients Alu, Alv and material values Pw needed to com-

with (k, 1) {(i,j), (i + 1,j), (i - 1,j), (i,j + 1), (i,j - 1)}. pute hw(,J) located at the barycenter of the inner facet.
Evaluating (12) within an equidistant grid with homoge- Note that the material inside one primary cell can be dis-
neous material distribution (p.w(u, v) = pu,) leads to the tributed arbitrarily, only the material function ILw(u, v)
approximated flux through the inner facet AAW(i..) needs to be integratable over the considered facets.

For the standard discretization scheme (homogeneous
/ A/uaA/)+ material distribution within each cell as in most FDTD

,,,(•, = l, yat • AlAl1 + a4  implementations), as well as for advanced modeling ap-
A/"AI' aproaches like triangular material fillings inside the cells,+a5 -* 2 ) + O(A/ 6 ). (13) explicit formulas for the matrix coefficients can be de-

rived.

So the presented biquadratic approximation leads to a C.2 Local Conversion of Field Strength to Flux Density
locally fourth order scheme for the normal field strength
value hw (0, 0) = a, at the intersection point of dual edge The scheme described above engenders a vector of nor-
Al,,, and primary facet AAw which is also the barycenter mal magnetic field strength quantities localized at the
of this facet. intersection point of dual cell edges and normal facets.

The resulting 5 x 5 linear system Obeying (5c) for surface charge free domains, the normal
components of the magnetic flux density is continuous in

( bw •) lala inhomogeneous material distribution. So for calculating
w(.,+, a 2  the magnetic voltage, the field strength component needs

bAu a3  (14) to be transformed locally into a flux density value (see
bw(,+,, a 4  Fig. 5) leading to the diagonal matrix

a 5  b = Mph. (16)

with the local surface integration matrix M() which The described material relation does not involve metric
can be inverted for each facet. Applying this conversion coefficients, so it is free of any discretization error due to
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~10b) I /

G b

V //

L ~ Al
Fig. 5. Local transformation of tangential continuous magnetic bO,, kl,

field strength into normal continuous magnetic flux density at u

the intersection point p of normal facet and dual edge. W

Fig. 6. Integration of normal continuous magnetic flux density
,however the locally material smoothing function bw(w) along the dual edge to obtain the magneticgrid refinement, hoee h oal aeilsotig voltage hw1 k).

inflicts an additional grid independent modeling error.

C.3 Integration of Voltage Applied to all cell edges, the approach leads to a
Starting from magnetic flux values on facets, we de- tridiagonal matrix converting magnetic flux density- into

rived in the normal direction to these facets a contin- voltage quantities
uous flux density quantity. In order to integrate this
flux density along the related edge to a voltage value, M = A[/b. (21)
an interpolation function bw(w) is assumed coinciding at
every intersection point of cell edge and corresponding C.4 Higher Order Material Matrices for High Frequency
dual facet with the former calculated normal flux density Problems
hw(kl "/P(k)" For instance a localized quadratic approach Algorithms for high frequency problems, which will be
for the flux density function in w-direction described later in more detail, require numerical schemes

2 for flux to voltage transformations. In the case of fourth
b.(w) = ci + c2 • w + c3 • W (17) order approximation and interpolation functions, de-

noted in (11) and (17), 15 flux values are required tocalculate a single voltage value (see Fig. 7). The above
bw(O) = hw(k) ' P-(k),I (18a) described three step scheme results in modified material

matrices

bw (A l w(k)) = hW (k+ l) " w(k+l, )I (18b) -

b = h(k) "w(kl) (18c) = -M(22a)

results in a 3 x 3 linear equation system for each dual M,_1

edge. Having determined cl, c2 and c3 , the magnetic i AT/iMFM(,Ai,)-1 (22b)
voltage can be integrated by use of the corresponding
material distribution function p2w(w) (see Fig. 6)

2 cand the local error of this flux-voltage transformation
C1 + ci C2 W + C3  dw. (19) is O(A13"'s). In the case of an equidistant grid and ho-

(k /'Imogeneous material distribution, the 15-banded material
matrices (see Fig. 8) are positive semi definite. In terms

Integrating (19) within an equidistant grid with ho- of numerical efficiency it is advisable to store the sur-
mogeneous material distribution (pz•(w) = pw) results face derivation matrices MpM(AA,)-' and MEM(AA.)-1
in and the line integration matrices M~ilp and MA,/g sepa-

rately, which saves nearly 50% of CPU-time and memory.
hw(k) = -P W ( + C3  + ). (20)

In the case of arbitrary grid spacing or inhomogeneous D. Higher Order Voltage to Flux Transformation

material the quadratic approach results in a local con- The material matrices converting edge based (volt-
vergence rate of O(A14 "l5 ). age) into surface based (flux) fields can be derived in
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strength function multiplied with the material weighting
function 6,, (u, v) enables the calculation of the flux t

6 , through the inner facet. For illustration purposes Fig. 9
displays the 15 relevant electric voltages for calculating
one electric flux. Note that in contrast to the conven-

eh,, b~

AV~~ ... .. -- -- .-- - - -- - -- Fj.... / ,

Ie, ,

_V--------------------- ---------

Fig. 7. Local transformation of magnetic flux into voltage
quantities h with the presented fourth order scheme. Thecalculation of one voltage value involves 15 flux values vt

0G w

200 • Fig. 9. Local transformation of electric voltage " into electric

400o flux values d with the presented fourth order scheme. The
600. \calculation of one flux value requires 15 voltage values.

800 tional scheme the voltage-flux matrix M, is the physical,

10 but not the numerical inverse of the flux-voltage matrix
12o0 \ M,-,, i.e. in general holds M`-I 5 M,.

1400 E. Boundary Conditions

160 Since the enhanced flux-voltage and voltage-flux trans-
formation leads to wideranging material matrices, the
treatment of values at the boundary of the calculation

2000- area is more enhanced as in conventional FIT. PEC

200 400 600 8 100100 1400 1600 1800 2000 and PMC boundary properties are regarded as symme-
try conditions for the normal and anti-symmetry condi-

Fig. 8. Structure of the 15-banded M.-. matrix of a cavity dis- tions for the corresponding tangential field strength val-
cretized with 10 x 10 x 5 cells and PEC boundary. ues at the boundary. Thus, the described algorithm can

be applied straightforwardly for this kind of boundary
conditions by choosing suitable even or odd higher order

a straightforward way. The basic steps are shortly de- describing functions at the boundaries. The incorpora-
noted for the voltage-flux transformation of an electric tion of open boundary conditions like Mur's ABC [17]
voltage component in w-direction: The line integral of a or the popular PML-ABC [18] follows the conventional
higher order flux-density function d00(w) multiplied with technique.
the material weighting function e0 0(w) approximates the
voltages along the edges of a grid line. Converting the F. Numerical Efficiency
flux density dw into a field strength quantity ew at the Applying the described fourth order technique, the
intersection point of dual facet and corresponding edge simple diagonal material matrices of second order accu-
enables the construction of a higher order field strength racy are replaced by 15-banded matrices, so the storage
function ew, (u, v) interpolating the derived field strength of the material matrix and the matrix-vector multiplica-
values. Once again the surface integration of the field tion is drastically affected. Since the obtained matrices



SPACHMANN, SCHUHMANN, WEILAND: HIGHER ORDER SPATIAL OPERATORS FOR THE FINITE INTEGRATION THEORY 17

are symmetric, just half of its components have to be can be constructed for the three components of one cell
stored, so the memory requirement for the fourth order node resulting in a 3 x 3 eigenvalue problem with the
scheme rises from N values (in the second order case) to three eigenvalues w? = Ai. The three eigenvalues are
5N values. The CPU-time increases from N to 11N flops wl = 0 (static modes) and the two-dimensional space of
for one matrix-vector multiplication. Assuming that VN eigenvectors with the eigenvalues w2 and w3, reflecting
points can be saved by maintaining the order of accuracy, the two possible polarization modes of the plane wave.
the fourth order scheme is numerically cheaper than the This scheme leads to the formulation of a generalized
conventional one if a high accuracy solution is required. grid dispersion relation with the eigenvalues
Comparing the new approach with conventional higher
order finite differences approach [7] (FD-4) reveals, that 2 =M -l M 1 (1) (2 sin( )k, +

the memory consumption of both schemes is equal but 2 (3,3)-/1- (2,2) 2
computationally a single application of the new spatial A k_ ) 2

operator costs 14 Flops (floating point operations) per +Me-(I_) M- (1) 2 sin( 2)) +
field component in contrast to 11 Flops for the conven-
tional FD-4 scheme thus leading to a 27% computational M (1 _k__,+M,- ,( t)(2,2) 2sin( ) , (27a)
overhead. (1, I 22 2 1

IV. FREQUENCY DOMAIN FORMULATION W 3 -- (2,2) A- 13,3) ( 2 sin( 2 )

In the case of time harmonic problems, the electric
curl-curl eigenvalue equation can be derived from (2a) +M) •(M) 1 ( 2sin( kA +
and (2b) 3) (1,1)2 (3,3)

2M, I M(1) Mg ()/2 "skin( '
_ -1 CMu- C1  = Ai (23) + Me-i (2,)'"-(1,1) 2 sn(2)) . (27b)

with A = w2 . The extraction of the lowest eigenfrequency It is evident, that the transformation of surface based
of a cavity discretized with N cells requires to shift the to edge based integral values has to be treated sim-
nearly N zero eigenvalues caused by static modes to ilarly for both quantities (i.e. M,-,(') 2) (t)
higher eigenvalues by imposing a graddiv operation to for bot.q (2,2a rddi praint (C )ec)toesr (22 pyical desrip
the curl-curl equation. The Helmholtz eigenvalue prob- M- (1 ,1 )A-1 (2,2) etc.) to ensure a physical descrip-
lem [16] tion of the plane wave propagation.

Necessary for physical consistency is the convergence
(Me, ICMP-, C + §STDS SM-j ) = Ai (24) of (27) to the analytic angular frequency

with the scaling matrix D, ensures an appropriate shift 2 2= 1 2

of the static eigenvalues resulting in "ghost modes" PE + k ) (28)

which can easily be identified using FIT's consistency with ku = kcososin9, k, = ksinosin9 and k.relation (3). wt u=ko~iO v=ki~i0adk
In the present approach, where Me-3 is a non-diagonal k cos 0, which can be revealed by means of Taylor expan-matrix and its numerical inverse M, 1 can not be triv- sion of the trigonometric expressions of (27) with limA-omatrixa nd ipts nthe modified formulation [20] proofing the order of convergence.

ially computed, tFollowing the described scheme, a generalized local ma-

(CMA-I CM,-I + STD'DS)a = Ad (25) terial matrix

for the electric flux with the modified shifting matrix D', =,5Ms-i 1 =, M11-i(' (29)

can be used. can be defined. Hereby conventional FIT uses coeffi-

A. Grid Dispersion Relation cients

Assuming an infinite equidistant grid with the pri- () 1u
mary and dual cell edges A,,, A•, A,, and a homo- (,) - AW(30a)

geneous material distribution with the values e and p, M•(1  - _'A 3b
we consider the propagation of plane waves. Defining (2,2) - AAw (30b)

spatial phase factors TU - e-jk-'A, Tv = e -jkýA and Mn'(0) AW
Tw = e-jke1 A', the local version of the curl-curl matrix (3,3) A-•. (30c)

&0M(,C(0M( -(1) - (26) for the material matrix elements resulting in an order of
) A- )M d.)= Ad (26) O(A2 ) for (27). The proposed fourth order approach is
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a) b)
200 200 %%%- \\ % \ \

%p% % %'tx
400 40- N%%%~ %~ % %

80 600\

800 800\ \\ \\%% \ .%\ %%%\
1000 1000 %%%% 10DO %%%%,
1200 1200\ \\\ \%%%%\ \ \\%%% \%4\ \%%%,
1400 1400

\ \% %%%\ %%%
1800 \N 160 %%%1 %%%' %%%%
1800 \ \ \N 1800 '%%%% %%%, %%%%44

\\ \ \%%%% \%'%'% %%%%
2000 200 0 \ %%

0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fig. 10. Structure of the electric curl-curl matrix (23) with second order approach (a) and fourth order material matrices (b) of a cavity
discretized with 10 x 10 x 5 cells and PEC boundary condition.

described by the following matrix elements: V. SPATIAL STABILITY

In order to obtain late-time stability of time-domain

2 kmethods, the condition for the so-called spatial stability
"()1 1 [ - sin2 [19] of the curl-curl matrix (23) must hold: It states the

6 (.2__))k need of real-valued positive eigenvalues of the curl-curl
1+ 1 sin 2 + sin 2 

,kA))J matrix, which is ensured in FIT by the rewritten form
(31a) of (23)

M 2 1- 1 sin2 ( •(k1/2TcM -T
(2,2) .6 2 1/2 )T (MA/ 2 CM 1/

2)i =A;' (32)

1 + 1 sin2 (klAu + sin 2 k, M/26 2 2 AýAý' with i' := ivie. Necessary for this transformation are
(31b) positive semidefinite material matrices M,-1 and M.-1,

"M(,) = -
1 sin 2 which in conventional FIT is assured by diagonal matri-

(LLN I ces with non-negative entries.
1 + - sin2 sinin_ (k1 Ai) A In the case of a non-equidistant grid or inhomogeneous

6 A2 23 A cl, material distribution the fourth order method results
(31c) in non-symmetric material matrices which can lead to

complex-valued eigenvalues of (23) and an unstable up-
and the Taylor expansion of (27) reveals an overall spa- date algorithm for time-domain simulation.

tial convergence of O(A4). Figure 11 a) shows the en- In order to reobtain a stable formulation, the sym-
hanced dispersive character of the fourth order modeling metrization of the material matrices is enforced resulting
in contrast to the second order approach of a time har- in a local increase of discretization error. The underly-

monic plane wave propagating transversely through an ing idea of the symmetrization process is an averaging of
ideal equidistant homogeneous infinite grid. The direc- metric primitives and material values. Figure 13 displays
tion dependent phase error at different spatial sampling metric coefficients needed for the calculation of two ad-
rates is displayed in 11 b). The convergence rate of (27) joined magnetic voltages h w(1) and hhw( 2), Fig.14 shows
using the generalized material matrix elements (30) re- metric values, fluxes and material distribution for the
spectively (31) and also of the conventional FD-4 scheme calculation of the adjoint magnetic fluxes bw(i,i) and
is displayed in a) and the direction dependent relative er- bw(2,1).
ror of the FIT-4 and the FD-4 scheme in percent in b) VI. COUPLING OF FOURTH AND SECOND ORDER
of Fig. 12. The FD-4 scheme demonstrates a slightly SPATIAL REGIONS
lower dispersion error in every direction, the maximal
relative error of the FIT-4 is approx 0.2% larger, which The conventional FIT formulation offers a wide va-
is quite negligible. riety of enhanced spatial discretization techniques con-
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a) 3,3 b)
3 Sanalytic/-

2,7 -B--E3-- 2nd order

2,4 4.16 ore

2,1 1 
n,=
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Fig. 11. The dispersion characteristic for a wave propagating in diagonally direction (0 = 54.7, = 450) is displayed in a). Fig. b)

shows the phase error of kn,,,r of the second (n2) and fourth (n4) material modeling at the sampling rates n2/4= A/A = 2,3,5 and
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Fig. 12. Convergence of the spatial dispersion relation (27) to the exact solution in (28). Figure a) displays the relative error of the

angular frequency w 0 0 ,-, of a plane wave traveling diagonally through the grid using second and fourth order material matrices and

also the FD-4 operator in dependence of the number of grid steps per wavelength (n = A/A). Fig. b) displays the relative phase

error in percent of the FIT-4 scheme (lower part) and of the FD-4 scheme (upper part) at a sampling rate of n = \/A = 4 as a

function of the direction of wave propagation in the grid.

cerning the treatment of non-orthogonal grids [20], sub- and easy to handle subdomain technique combining the

grids [21], dispersive [22], gyrotropic [23] or non-linear advantages of second and fourth order material model-

material modeling [24] and a lot of other specialized tech- ing has been developed. The underlying principle of the

niques. spatial stability, explained in section V, requires a sym-
metrical treatment of the components involved in the

As seen before, the fourth order spatial modeling is flux-voltage conversion process at the interface connect-

superior to the conventional scheme concerning disper- ing the second- and the fourth order region, thus provid-
sion, accuracy and convergence. Incorporating all these ing a symmetry relation for the involved quantities.

features in the fourth order technique would cause an

enormous numerical effort and programming and lead At the interface connecting the second and fourth or-

to an unacceptable overhead in the computational pro- der domains "mixed-order" functions describing the tan-

cess. To circumvent this problem, a low reflective, stable gential and normal fields are used to ensure a symmetric
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I •Half of the calculation domain is discretized with the fourth
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S Al., scheme.
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U , the frequency domain analysis displayed in Fig. 17 a)
:AI, Al. ,) demonstrates a convergence rate of O(A"s8 7 ) for the sec-

ond order and 0(A 4 "1 s) for the fourth order formulation.
Fig. 14. Coupling coefficients for calculation of magnetic field

strength values from magnetic fluxes. Stability is guaranteed, B. Time Domain Convergence
if CAI2 - CA21.

Higher order time domain formulations are called

interaction of the involved quantities from both spatial (N,X)-schemes, N describing the order of temporal

domains. Figure 15 displays the structure of the M,-, integration and X the order of the spatial operators.

matrix of a cavity modeled with the hybrid scheme. Full fourth order explicit time domain schemes ((4,4)
schemes) require a fourth order spatial scheme as well as

VII. EXAMPLE a fourth order time integration method [25]. For time-
domain analysis of the convergence behavior, we impose

The presented method of fourth order spatial dis- a Gaussian-formed pulse with 200MHz center frequency
cretization is applied to a simple three dimensional rect- and 80MHz bandwidth stimulating the TM1 10 mode.
angular cavity with the dimensions lmxlmx0.5m and The stimulating dipole is located at the center of the
PEC boundary conditions. The analytical resonance fre- computational domain. The time step size is chosen as
quency of the configuration's lowest mode is fTM,,o = At = 0. 7 5 Atcourant , and the resonance frequency is ex-
fTEIIo = 212.13 MHz. The size of the cell edges is var- tracted by means of Discrete Frequency Transformation
ied from A/3 down to A/17. (DFT).

The numerically computed overall convergence order
A. Spatial Convergence in the case of an equidistant grid is O(A 2 '7 ) for the

To study the convergence behavior of the fourth order (2,2) Leap-Frog scheme. The fourth order scheme with a
material matrices due to grid refinement, the resonance fourth order version of the Leap-Frog update equations
frequency is calculated in the frequency domain using ((4,4)-scheme) exhibits an unexpected high convergence
(24) respectively (25) with refinement of the cell edges. rate of O(A 7 .9 ). A hybrid (4,4-2) Leap-Frog formula-
In the equidistant case a convergence rate of O(A 2.°4 ) for tion [25], with a reduced computational effort per time
the conventional method and - as expected - of O(A 4 "5 ) step uses fourth and second order material matrices and
in the fourth order case can be observed. The conver- demonstrates an overall convergence of O(A 4's) (see Fig.
gence rates of the eigenfrequencies are displayed in Fig. 16 b). The same analysis with a non-equidistant grid
16 a). In the non-equidistant case, whereby the spa- (Fig. 17 b) demonstrates a convergence rate of O(A 2 "2 8 )
tial step is reduced from one edge to the next by 5%, for the (2,2) and O(A 4 "s5 ) for the (4,4) scheme.
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convergence rate of the (2,2), (4,4) and a hybrid (4,4-2) FITD scheme.
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Fig. 17. Frequency Domain (a) and Time Domain (b) convergence of the lowest eigenmode of the rectangular cavity discretized by a
non-uniform grid where the edge lengths are defined by Ai+ = 0.95Aj .

The improvement of the time-domain convergence rate ces for the transformation of grid fluxes into grid voltages
of the (2,2) scheme in comparison to the second order and vice versa, which is the only modeling step in FIT
frequency-domain modeling results from a partial com- where approximations are introduced. Within these ma-
pensation of time-integration and spatial discretization trices, higher order piece-wise defined polynomials are
error having different signs. A similar effect is assumed applied for the interpolation of the field quantities, tak-
to be responsible for the extreme convergence rate of the ing care of all physical continuity relations. A gener-
(4,4) scheme. alized grid-dispersion equation is derived and analyzed

to demonstrate the convergence of the fourth order ap-
VIII. CONCLUSION proach. The stability of the new scheme is ensured by

In this paper a general extension of the FIT-algorithm the symmetrization of the resulting material matrices. A
towards higher order spatial resolution is proposed. coupling technique for the interface of second order and

FIT formulations for all systems of coupled differen- fourth order domains is discussed.

tial equations following these properties can be extended In comparison to existing finite difference techniques,
to the presented higher order technique, exemplarily the the presented scheme demonstrates the same dispersion
Maxwellian system is discussed. characteristics and nearly the same computational cost,

The new scheme is based on modified material matri- but all the consistency and conservation properties of
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